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T he National Human Exposure Assessment Survey (NHEXAS) pilot studies were conducted from 1995 through 1997 to examine human population exposure to a wide
range of environmental contaminants.  In the NHEXAS-Maryland study, a longitudinal design was used to repeatedly measure aggregate residential chlorpyrifos

exposure in a stratified random sample of 80 individuals.  Chlorpyrifos is a semi-volatile insecticide which has been found to persist for weeks following application.  Until
recently, chlorpyrifos was commonly used for indoor and outdoor treatments by both residents and commercial applicators and also as a termiticide during residential con-
struction.  It was also present in a number of agricultural commodities.  The effect of urbanization stratum (i.e., characterization of participant's community as urban, subur-
ban, or rural) on chlorpyrifos exposure was investigated using mixed-effects regression models to accommodate longitudinal data and to estimate variance components.  Three
surrogates of exposure, namely, indoor air concentrations (n = 97), surface dust loading (n = 123), and creatinine-adjusted urinary metabolite (3,5,6-trichloro-2-pyridinol) con-
centrations (n = 341), were considered separately.  The effect of the specified covariance structure was explicitly evaluated to determine if the pooling of variance components,
as is often performed by default, is appropriate.  Likelihood ratio tests comparing possible covariance structures suggested that the pooling of within- and between-person
variance components among urbanization strata may not be appropriate for indoor air concentrations (p < 0.001).  The variance estimates indicated that indoor air concentra-
tions were far more variable among households in rural communities than in urban or suburban communities.  Furthermore, since the estimates of the arithmetic means
depend upon the variance components, the choice of covariance structure exerted a large effect upon the estimates of indoor chlorpyrifos concentrations.  Mean indoor air con-
centrations for urban, suburban, and rural households in this study were estimated to be 7.3, 20.2, and 23.0 ng/m³, respectively, when allowing for distinct variance compo-
nents, but were estimated to be 11.9, 16.6, and 11.7 ng/m³, respectively, when pooling the components.  Similar analyses, on the other hand, indicated that variance compo-
nents may be pooled among urbanization levels when evaluating surface dust and urinary metabolite concentrations.  These preliminary results, albeit based on relatively
small sample sizes, indicate that the choice of covariance structure can have a large effect on the results of an analysis and must be given appropriate consideration. 

I n the analysis of longitudinal data there is a need to accom-
modate the covariation induced by repeated measures on

the same subject.  With mixed-effects statistical programs such as
SAS PROC MIXED, users can select among several covariance
structures (for example, compound symmetry, random coeffi-
cients, and first-order autoregressive) to model their data.
Additionally, the degree of heterogeneity in the covariance struc-
tures can also be specified.

The default assumption in PROC MIXED, which is often
applied automatically and uncritically, is that both the between-
subject and within-subject variance parameters can be pooled
across groups.  In other words, only two variance parameters, one
between-subject component and one within-subject component,
are estimated and applied to all subjects, irrespective of grouping
level.  Two levels of heterogeneity, however, can be specified to
accommodate different variance patterns across groups: 1) distinct
between-subject but common within-subject variance, or 2) dis-
tinct between- and within-subject variance.

Although pooling information across groups increases the pre-
cision of variance components estimates and allows analysis
where some groups contribute few repeated measurements,
important errors can be made when assumptions regarding
homogeneity are not met.  Accurately modeling the heterogeneity
in the covariance is important because valid inferences about the
estimated parameters can only be made when an appropriate
covariance model is selected.

Qualitative indices of relative goodness-of-fit such as Akaike's
information criterion (AIC) and Schwarz's Bayesian criterion
(SBC) are readily available and are often used to compare models
with different covariance structures.  Some (Rappaport et al., 1999;
Weaver et al., 2001) have suggested that a more rigorous
approach, the Likelihood Ratio Test (LRT), be used.  The LRT is
straightforward and is easily performed using common spread-
sheet programs such as Excel.

Data from the National Human Exposure Assessment Survey in Maryland (NHEXAS-
Maryland) was used.  Participants were from three urbanization groups: urban, suburban,

or rural.  Three measures of chlorpyrifos exposure, chlorpyrifos in indoor air and house dust and
the metabolite 3,5,6-trichloro-2-pyridinol (TCPy) in urine, were evaluated to demonstrate the
Likelihood Ratio Test and the consequences of inappropriate covariance structures.  All dependent
variables were found to be lognormally distributed.  Group-specific geometric means for each type
of measure were estimated by mixed-effects analysis.

Likelihood Ratio Test (LRT):
1. Fit the three models (pooled variance parameters, pooled within-person variance, and dis-

tinct within- and between-person parameters) to the log-transformed data using PROC
MIXED.

2. Compute the Likelihood Ratio Test statistic (the "Deviance") by subtracting the "-2 Restricted
Log Likelihood" value (provided in the "Fit Statistics" section of the SAS output) of one model
from another [the difference between two logged values equals the logarithm of the ratio of
the values].

3. Determine degrees of freedom by counting the number of variance parameters provided in
the "Covariance Parameter Estimates" section of the SAS output for each model and sub-
tracting one from the other.

4. Compare the Likelihood Ratio Test deviance statistic to the Chi-Square distribution.

Choosing a Model:
Unless the LRT indicates that more parameters provide a significantly better fit, choose the

model with the fewest parameters, thereby maximizing parsimony and increasing power.

Group Mean and Variance:
The arithmetic mean (µx,h) and variance (σ2

x,h) for each of the h groups is obtained using the mean
of the logged values for each group (µy,h) from the "Solution for Fixed Effects," the appropriate
between- and within-person variance components (σ2

B,h and σ2
W,h), and the following relationships:

Group arithmetic mean:  
µx,h = exp(µy,h + 0.5*{σ2

B,h + σ2
W,h})   and   

Group arithmetic variance:  
σ2

x,h =µ2
x,h (exp{σ2

B,h + σ2
W,h} - 1)

Simultaneous analysis of data from multiple groups (for example: urban,
suburban, and rural dwellers) is advantageous when at least one of the

variance components can be assumed to be homogeneous across the groups.
Pooling data across groups to estimate common variance components requires
fewer parameters to be estimated and effectively increases sample size, precision,
and the power to detect effects.  However, incorrectly assuming homogeneity of
variance components can introduce bias and lead to erroneous conclusions.

Estimates of fixed effects (i.e., group means) and variance components may be
substantially different (see Figure 1a, chlorpyrifos in air) for different covariance
structures.  In addition to group means, accurate estimates of the variance com-
ponents themselves are often important for determining probabilities of
'exceedance' and 'overexposure', intraclass correlation coefficients of reliability,
and variance ratios.  These estimates can vary widely with different covariance
structures.  Thus, it is important to choose the covariance structure that provides
the best fit to the data.

Indices of relative goodness-of-fit, such as AIC the SBC, are often useful for
choosing among structures but cannot indicate whether two competing struc-
tures are significantly different.  A more rigorous test, the Likelihood Ratio Test
(Tables 3a-c), can be applied to conclusively determine the best fit.  The test is
straightforward and easy to perform.

These results indicate that the choice of covariance structure can have a large
effect on the conclusions drawn from an analysis and must be given appropriate
consideration using appropriate tools.
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Estimated group-specific mean concentrations (µx,h) of chlorpyrifos in indoor air (a),
TCPy in urine (b), and chlorpyrifos in dust (c) from the three covariance models.
Note the large effect on group differences resulting from choice of covariance struc-
ture in Figures 1a and 1c.

Chlorpyrifos in
indoor air.
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Figures 1a-c

Figure 1a

TCPy in urine.

Figure 1b

Chlorpyrifos in
surface dust.

Figure 1c
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    No. "between" No. "within" Total No. 
Model Description Parameters Parameters Parameters 

1  Distinct σ2
B & σ2

W 3 3 6 
2  Distinct σ2

B/Pooled σ2
W 3 1 4 

3  Pooled σ2
B & σ2

W 1 1 2 
 

    1 vs 2:    1 vs 3:    2 vs 3:   
Model (-)2LL Parameters Deviance df prob Deviance df prob Deviance df prob 

1 294.1 6 18.9 2 0.0001 22.6 4 0.0002 3.7 2 0.1572 
2 313.0 4            
3 316.7 2            

    1 vs 2:    1 vs 3:    2 vs 3:   
Model (-)2LL Parameters Deviance df prob Deviance df prob Deviance df prob 

1 763.1 6 2.6 2 0.2725 7.0 4 0.1359 4.4 2 0.1108 
2 765.7 4           
3 770.1 2            

    1 vs 2:    1 vs 3:    2 vs 3:   
Model (-)2LL Parameters Deviance df prob Deviance df prob Deviance df prob 

1 440.4 6 2.4 2 0.3012 5.8 4 0.2146 3.4 2 0.1827 
2 442.8 4           
3 446.2 2            

 

Description of the three different covariance structures and the numbers of variance
parameters estimated with each model.  Note that there are three urbanization groups
(urban, suburban, and rural).

Table 1

Mixed-effects estimates of group-specific parameters for three competing covariance
structures.

Table 2

Likelihood Ratio Tests comparing the three competing covariance models for Chlorpyrifos
in indoor air.  The model specifying heterogeneous variances (distinct σ2

B & σ2
W) provides

a significantly better fit than either model pooling the variances across groups.

Table 3a

Likelihood Ratio Tests for TCPy in urine.  With no benefit gained by estimating distinct
parameters, both the between- and within-person variance components can be pooled
across groups.

Table 3b

Likelihood Ratio Tests for Chlorpyrifos in surface dust.  Despite the large difference in rel-
ative group means across the models in Figure 1c, estimating distinct parameters does
not provide a better fit.

Table 3c

DISCUSSIONDISCUSSION
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Total Variance Geometric Arithmetic
Model Group (σ2

B,h + σ2
W,h) Mean (µy,h) Mean (µx,h)

1 urban 1.4 1.3 7.3
suburban 2.7 1.7 20.2
rural 3.9 1.2 23.0

2 urban 1.5 1.3 8.1
suburban 2.4 1.6 16.2
rural 4.4 1.2 30.3

3 urban 2.4 1.3 11.9
suburban 2.4 1.6 16.6
rural 2.4 1.2 11.7
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